Neuronal Ca(V)1.3alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines.
نویسندگان
چکیده
L-type calcium channels regulate a diverse array of cellular functions within excitable cells. Of the four molecularly defined subclasses of L-type Ca channels, two are expressed ubiquitously in the mammalian nervous system (Ca(V)1.2alpha(1) and Ca(V)1.3alpha(1)). Despite diversity at the molecular level, neuronal L-type channels are generally assumed to be functionally and pharmacologically similar, i.e., high-voltage activated and highly sensitive to dihydropyridines. We now show that Ca(V)1.3alpha(1) L-type channels activate at membrane potentials approximately 25 mV more hyperpolarized, compared with Ca(V)1.2alpha(1). This unusually negative activation threshold for Ca(V)1.3alpha(1) channels is independent of the specific auxiliary subunits coexpressed, of alternative splicing in domains I-II, IVS3-IVS4, and the C terminus, and of the expression system. The use of high concentrations of extracellular divalent cations has possibly obscured the unique voltage-dependent properties of Ca(V)1.3alpha(1) in certain previous studies. We also demonstrate that Ca(V)1.3alpha(1) channels are pharmacologically distinct from Ca(V)1.2alpha(1). The IC(50) for nimodipine block of Ca(V)1.3alpha(1) L-type calcium channel currents is 2.7 +/- 0.3 microm, a value 20-fold higher than the concentration required to block Ca(V)1.2alpha(1). The relatively low sensitivity of the Ca(V)1.3alpha(1) subunit to inhibition by dihydropyridine is unaffected by alternative splicing in the IVS3-IVS4 linker. Our results suggest that functional and pharmacological criteria used commonly to distinguish among different Ca currents greatly underestimate the biological importance of L-type channels in cells expressing Ca(v)1.3alpha(1).
منابع مشابه
Functional interaction of auxiliary subunits and synaptic proteins with Ca(v)1.3 may impart hair cell Ca2+ current properties.
We assessed the functional determinants of the properties of L-type Ca(2+) currents in hair cells by co-expressing the pore-forming Ca(V)1.3alpha(1) subunit with the auxiliary subunits beta(1A) and/or alpha(2delta). Because Ca(2+) channels in hair cells are poised to interact with synaptic proteins, we also co-expressed the Ca(V)1.3alpha(1) subunit with syntaxin, vesicle-associated membrane pro...
متن کاملL-type calcium channels: highs and new lows.
Voltage-gated calcium channels are essential for coupling membrane depolarization to the influx of calcium in all excitable cells. The calcium that flows into excitable cells through voltage-gated calcium channels serves a dual function, generating both electrical and chemical signals. The intracellular events controlled by calcium are diverse and many. Excitable cells can select from a number ...
متن کاملBlock of T-type Ca channels in guinea pig atrial cells by antiarrhythmic agents and Ca channel antagonists
Myocardial cells have two types of Ca channels commonly called T-type and L-type. Whole cell Ca channel currents in guinea pig atrial myocytes can be separated and quantitated by analyzing channel closing kinetics after a brief depolarization (tail current analysis). L-type Ca channels deactivate rapidly when the membrane is repolarized and T-type Ca channels deactivate relatively slowly. Ca ch...
متن کاملAdrenal fasciculata cells express T-type and rapidly and slowly activating L-type Ca channels that regulate cortisol secretion
Enyeart JJ, Enyeart JA. Adrenal fasciculata cells express T-type and rapidly and slowly activating L-type Ca channels that regulate cortisol secretion. Am J Physiol Cell Physiol 308: C899–C918, 2015. First published March 18, 2015; doi:10.1152/ajpcell.00002.2015.—In whole cell patch-clamp recordings, we characterized the L-type Ca currents in bovine adrenal zona fasciculata (AZF) cells and expl...
متن کاملAdrenal fasciculata cells express T-type and rapidly and slowly activating L-type Ca2+ channels that regulate cortisol secretion.
In whole cell patch-clamp recordings, we characterized the L-type Ca(2+) currents in bovine adrenal zona fasciculata (AZF) cells and explored their role, along with the role of T-type channels, in ACTH- and angiotensin II (ANG II)-stimulated cortisol secretion. Two distinct dihydropyridine-sensitive L-type currents were identified, both of which were activated at relatively hyperpolarized poten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 16 شماره
صفحات -
تاریخ انتشار 2001